Home | Articles
Published on:August 2023
Indian Journal of Pharmaceutical Education and Research, 2023; 57(3s):s548-s554.
Original Article | doi:10.5530/ijper.57.3s.63

Solid State Characterization and Miscibility of Raltegravir in Soluplus Using Solid Dispersion Technology


Authors and affiliation (s):

Dani Lakshman Yarlagadda, Akshatha Manohar Nayak, Krishnamurthy Bhat*

Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, INDIA.

Abstract:

Background: Raltegravir Potassium (RTGP), a BCS class II drug used in the treatment of HIV, has minimal solubility in the aqueous medium, resulting in poor bioavailability; Further, RTGP poor dissolution and limited solubility are also major factors responsible for the significant inter- and intra-patient variability in absorption following oral administration. Objectives: To enhance the solubility of Raltegravir potassium and its free acid using Soluplus® by solid dispersion technology. Materials and Methods: In the current study, Amorphous Solid Dispersions (ASDs) of RTGP and Raltegravir free acid (RTG) of 20:80% w/w with Soluplus® (SLP) were prepared using quench cooling. The prepared ASDs analyzed for homogenous single-phase formation and intermolecular interactions employing DSC, XRD, and FT-IR. The drug-polymer miscibility was calculated theoretically as well as experimentally with the aid of Hansen solubility parameter and melting point depression methods. The solubility of the ASDs was evaluated by the shake flask method. Results: Quench cooling yielded an RTGP-SLP and RTG-SLP homogeneous amorphous systems. DSC and XRPD results showed the complete transformation of crystalline to the amorphous phase for ASDs. Intermolecular interactions in specific hydrogen bonding were observed between the carbonyl (-C=O) group of Soluplus® and the Raltegravir -N-H moiety. RTG solubility in salt solid dispersion increases by 10.7 and 17.4 folds, respectively, compared to pure forms. Furthermore, free acid ASDs improved solubility by 8.7 and 14.1 folds, respectively, compared to their pure compounds. Conclusion: Salt solid dispersion showed a greater extent of miscibility and improved solubility of RTG compared to free acid solid dispersion.

Keywords: Raltegravir, Amorphous salt solid dispersion, Amorphous solid dispersion, Quench
cooling, Solubility.

 




 

Impact Factor

IJPER - An Official Publication of Association of Pharmaceutical Teachers of India is pleased to announce continued growth in the Latest Release of Journal Citation Reports (source: Web of Science Data).

 

Impact Factor® as reported in the 2023 Journal Citation Reports® (Clarivate Analytics, 2023): 0.8

The Official Journal of Association of Pharmaceutical Teachers of India (APTI)
(Registered under Registration of Societies Act XXI of 1860 No. 122 of 1966-1967, Lucknow)

Indian Journal of Pharmaceutical Education and Research (IJPER) [ISSN-0019-5464] is the official journal of Association of Pharmaceutical Teachers of India (APTI) and is being published since 1967.

DOI HISTORY

IJPER uses reference linking service using Digital Object Identifiers (DOI) by Crossref. Articles from the year 2013 are being assigned DOIs for its permanent URLs